COLUMBIA

EPIDEMIOLOGY MAILMAN SCHOOL OF PUBLIC HEALTH

- Breast cancer is the most frequently diagnosed cancer in midlife
- those in the environment

- longitudinal cohort in Nantes, France
- multiple confounders

- SAS and correlation matrix with Matlab
- Multivariable analysis of variables related to TNBC with SAS

BCEXPOS: Breast Cancer and the Chemical, Nutritional and Social Exposome

Jeannie Michelle Au

EHESP: Jeannie Michelle Au, BA | Eva Gorrochategui Matas, Ph.D. | Vincent Bessonneau, Ph.D.

PLS-DA analysis was applied defining four classes (1-4 corresponding to different BC phenotypes) and QC (quality controls) representing the pool of samples. Six components were selected to build the model, explaining a cumulative Y-variance of 64.4%.

The small dispersion of quality control samples (pink spots) in contrast with the high dispersion of BC phenotypes, due to biological variability, indicates $\frac{1}{40}$ good robustness of sample preparation

between the two metabolites of

r Age and BMI		Adjusted for Age and BMI		
95% CI	P-value	Odds Ratio	95% CI	P-value
).573, 8.190)	0.2544	0.439	(0.113, 1.705)	0.2344
).593, 5.034)	0.3166	0.482	(0.159, 1.458)	0.1962

Adjusted analyses showed individuals with Cresol and Difenzoquat exposure had decreased odds of having triple negative breast cancer phenotype than unexposed individuals.

Implications

- studies

Next Steps

- Annotations are ongoing to include another mode of sample preparation and mode of ionization with a focus on pesticides
- Conduct a case control study with a new cohort
- Further work including variables such as relapse and smoking could enhance the model
- Expand the scope of analysis to include more chemicals

Department

(1) Select among study designs and solving epidemic on study goals an available data

(2) Apply approp statistical measu and draw valid in health data.

Student Contributions

- Chemical database construction and annotation
- Literature research of chemicals in database
- Annotation of liquid chromatography-high resolution mass spectrometry
- conformity
- Univariate descriptive analysis of annotated pesticides with SAS
- Multivariable analysis of determinant variables for triple negative breast cancer with SAS
- I extend my sincere gratitude to the individuals and organizations whose support and collaboration have been crucial for this research.
- Special thanks to Dr. Vincent Bessonneau, my site supervisor, for his constructive criticism and insight which has enhanced the quality of this research
- I am deeply grateful for the valuable contribution of Dr. Eva Gorrochategui Matas for the unwavering guidance, continuous encouragement and always ensuring we got robust results with her expertise.

Conclusion

• The detection of several pesticides with potential carcinogenicity was feasible by LC-MS/MS analysis of BC blood samples Data processing completed with bioinformatic tools shows that the variables BMI and age should be considered in future related

Competencies

g common epidemiologic d explain their uses for ological problems based nd key sources of	Decided between case control and cohort study based on the data available
priate epidemiologic and res to generate, calculate, nferences from public	Calculated relevant epidemiological measures to analyze the data

• Multivariate analysis for data visualization and evaluation of

Acknowledgments